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Abstract

Let 8y; be ameasure of the relative stability of a stable
dynamical system Y. Let 74¢3;) be @ measure of the
computational cfliciency of a particular algorithm A
whichwverifies the stability property of X. For two rep-
resentative cases of 22, we demonstrate the existence of
a particular measure éy; andan algorithm A such that,

by Tas) T €

where ¢ depends possibly onthe dimension of the sys-
tern 3 and parameters which arc specific to thealgo-
rithm A, but independent of any other systeimn charac-
teristics, In particular, given X and d, one can estimate
by; by mecasuring TA(R)-

1 Introduction

1.1

The ficlds of control and system theory 011 onc hand,
and computational complexity on the other, are not
generally considered by therescarchers of either field
to be based on similar principles. Recently, some con-
trol and system theorists have begun a serious study
of control problems from the computational complex-
ity point of view, e.g., classifying control problemns in
terms of the complexity class which they belong to [3],
[9], [2 1], [15], [16]. ‘Fhisline of research is concerned
with determining whether a control problern is for ex-
ample NP-hard, etc. Such results convey the idea that
the corresponding system problem, whether it is analy-
sis or synthesis, is computationally difficult. One major
issue which wc believe has not been consider-ed in this
direction is the role that the theoretical studies of the
comput ational efficiency of agorithms canplay inan-
alyzingsystems problems that can be solved efficiently.
Given acontrol or system problem that we can solve by
means of an algorithm in a reasonable time (for examn-
ple in time which is proportional to a polynomial of the
dirnension of the system), what dots the running time
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of the algorithin disclose about some of the characteris-
tics of the system under study? In this avenue, suppose
that onc wants to examine the stability properties of a
certain dynamical systern aud analgorithm is used for
this purpose. Thus we usc an algorithin which accepts
as the input, a description of the system (e. g., interms
of matrices), and produces as an output “yes’ or “no, ”
indicating respectively, whether the system is stable or
unstable. Suppose furthermore that the time required
for the termination of this algorithm is proportional to
the dimension of the systemn and anotlier parameter,
denoted by €. We would like to show that for certain
problems in systeins and control theory, there exist al-
gorithms for which the corresponding € can be viewed
as a certain measure of robusiness, e.g., stability mar-
gin.

1.2

The results connecting robustness properties of dynam-
ical systemns and comnputational efliciency of algorithms
have very interesting implications in system and con-
trol theory. It turus out however that these results are
aparticular way of interpreting the related studies in
the complexity theory in terins of condition measures
as reported in [1 3]. The connection canin fact be es-
tablished a a inuch deeper level, in a sense that they
suggest a unifying framework for studying comnputa-
tional complexity and robustness.

The orgauization of the paper is as follows. in the
next section we initially consider the Lyapunov cqua-
tion, and demmonstrate that the product of the runming
time of a particular interior point inethod (ipm) and
a robustness measure for linecar systemns is a constant
which depends ounly on the dimension of the system
under study. We then turn our attention to the more
genera] problem of checking the positive realness of a
trausfer matrix. It is shown that the efliciency of the
ipm for determining the positive realness of a transfer
matrix is againrelated to certain notions of robustness.
The paper is concluded with a brief after-tllought on
theimplications of the results. The results reported in
the paper arc based on a section of the manuscript [8].

A few words on the notation. The notation herm(4)
denotes the hermitian part of the matrix A, i.e, .szfL’;
for two symmetric matrices A and B, A >11 (A > 1)
indicates that A --11 is positive definite (positive scini-




definite, respectively). As noted previoudly, T Aesn (os

ignates the running time of the algorithm d which ver-
ifics the stability properties of the dynamical system

Y. Finally, f(n) = O(g(n)) (f(n) = Q¢(n))) indi-
cates that there exist positive constants ¢ and m such
that O < f(n) <cg(n) (O <ecg(n)< f(n)), for all
n>m,i.c., f(n) grows slower (faster) thang(n) asn
increascs.

2 Interior Point Methods and Stability
Analysis

21

Wenow begin our study of the relationship) betweenthe
computational efliciency of the interior point methods
and the stability properties of dynamical systems. Wc
initially present this relationship in terms of the stabil-
ity criterion for linear time invariant systems expressed
interms of the Lyapuuov equation. This is done mainly
to establish the conceptual vein which is pursued in
the paper; we do not suggest that lyapunov equations
should be solved via theinterior point methods (al-
though they certainly can be). Nevertheless, the in-
sight that onc obtains fromsuch an analysis, hopefully,
justifics the presentation of these results. Wc subsc-
quently continue exploring the relationship between ef-
ficiency /stability in the framework of the Positive Real
Lemma. The latter presentation runs parallel to the
formcer case of the |l .yapunov equation; theconceptual
implications follow as well, although a a decper level
which weshall elaborate on.

2.2

As any student of control theory knows, in order to
establish the stability of the origin for the systemn )y,
defined by the matrix A ¢ I"*",

¥y d= Aw (2.1)

one cancheck the feasibility of the following system of
lincar matrix incqualities (1, MIs):

Li: AT 1PA <0 (2.2)
P>0 (2.3)

l.et us for the moment forget that the.sc matrix inequal-
ities can somchow be solved via a system of linear equa-
tions. Wc approach the problem of finding a feasible
point of the sct defined by (2.2)- (2.3) via theinterior
point methods. This will provide us with an oppor-
tunity to, rather informally, review the interior point
methods (ipms), as well as presenting the idea which
shall be generalized in the subsequent section. The ma-
terial on the ipms which follow have been presentedin
amorc generalsetting in [1 O] and [1 3]; our presentation
follows the latter reference.

In order to find afeasible point of (2.2)- (2.3), onccan
consider instead the following optimization problem,

Lo inf (2,4)
St. A'PAPA <Y A'P4PA 2 ]) (2.5)
1'>0 (2.6)
>0 (2.7)

where the matrix P is chosen to be positive definite,
eg. P = 1. Note that the feasible set of £, is a subset
of SR™*" x R.One might wonder why F’ is introduced
in (2.5). Thereasonisthatin doing so, a feasible point
of L2 is readily available: (Po, to) = (P, 1).Our task
is now to initiate the algorithmn from (£, 1) with the
objective value of 1, and try to somchow reduce the
objective value to zero (which would be the case if and
only if i1 is stable), without leaving the feasible region
of £2.7This is exactly whatan interior pointnethod
( 1ocs (more specifically, we have in mind the barrier
mecthod).

Yew cor nments, and a reformulation of £, precedes our
description of the barrier method. Suppose that we
were to solve the following optimization problem:

La: inf 1 (2.8)
s t AT + PA<t] (2.9)
P>0 (2.10)
7] <1 (211)
-l<t<? (2.12)

Let tinf and ¢, denote the value of the infimum and
the supremum of the objective functional on the re-
speetive region (e. g, tinf = O in Ly if ¥y is stable).
The value of tiurin L3 clearly is a measure of relative
stability; intuitively, the more negative one can choose
i, themore “stable” 21 is. The lower bound for t and
the norm constraint on I> arc chosen for normalization
purposes; otherwise the problem would beunbounded,
if feasible. T'he choice of the upper bound for ¢ would
be justifies shortly.

It is not clear however how to “pick” a feasible point
for L£3to initiate the algorithm fromn. We thus consider
instcad a combination of £, and La:

L: inf 1 (2.13)
s t. AP 1 PA<U(A'P4PA-]) (2.14)
1'>0 (2.15)

17l <1 (2.16)
-l<t<? (2.17)

with /> > 0 and|| || < 1. Theinitial point (2, 1) is now
readily available as aniuitial point. Again, the value of
tinr for £ somchow conveys inforination regarding the
relative stability of 2I;, an observation which shall be
made more precise shortly.



Let us denote the feasible region of £ by F;. Note
that 7 C SRY*™ x R and thatit isan open and con-
vex Set. It turns out that associated with the set 7y,
there is a functiona b : interior ¥, — R, which acts
as a “self-concordant barrier.“ ! ‘he term “sdlf concor-
dant” refers to certain properties of the gradient and
the Hessian of the functional b evaluated at points in
F,; for the purpose of our presentation, we shall by-
pass the exact definition andrefer the interested reader
to the references given above for the ipm theory.

Yhere arc two important points however that nced
to be mentioned regarding the functional &. First,
if {ﬂfk}k_>1e}'1, is a scquence that approaches the
boundary of Fj, b(at)-+00 as k — c0. Second,
there is a parameter ¥ associated with b which de-
termines the computational efliciency of the interior
point method for minimizing (or maximizing) a linear
functional over J7j, the so-called self-collcordant pa-
rameter. Yor brevity, wc shall simply write down the
self-concordant barrier for #j, and its associated sclf-
concordant parameter K. Subscquently, we provide a
description of the algorithm for solving £ using b, aud
its efliciency in terms of the self-collcorda~It parameter
of b.

Letb: 77, -» I bedefined as:

(I t) = —12logdet P
-12logdet(~ A'P - PA +- 1(A'P -1 PA4 D))
“12log(1 - ||P)|%) - 121og(t - 1) -- 12]og(2 - 1)

Note that indeed when (F%,1;)— boundary of 77,
b(1%, 1) - »00. Theassocialed self-co~lcordallt param:
cter for the functional b turns out to be,

K :=/12n 4121+ 48 = O(v/n) (2.18,

Wc arc now ready to describe the interior point methoc
for solving £.Starting fromn the initid point (7%,1¢):
(P, 1), and paramncter p = fo,

1. Let k= o.
2. Solve the unconstraint optimization problein
min $( Py, g, pix)
where (P, 1, pg) = pot Hb( P, e ).

. : 1
3. et jkq1= (1 1-6]‘,)/@.
4.Goto 1.

Of course, Step 2 cannot be solved exactly; a lot of re-
scarcl has been devoted to come up with a stopping
criterion for this step which is suflicient for proving
nice theoretical efliciency of the complete algorithmn.
Onesuch criterion, rather interestingly, isto take ‘(one”

T fact due to the result of Nesterov and Nemirovskii [10]
every open convex domain in #™ has such a functional associated
with it.

Newton step, starting with a “nice” initial point, and
thenincrease 4k (the so-called short step method). In-
tuitively, as k -» oo, y1p — 00, and the sequence of
minimal Values of ®(Fk, 1y, #1x) will approach tin .

The resulting complexity bound below is the upshot of
the interior poiut approach.

Theorem 2.1 ([1 3]) For solving L, starling with
(P, 1) using

1
O(A’ 1og(ix -t ) (. 19)
iterations, the above barricr method computes (I'*, t¥),
where 1 € 31, and U is known 1o salisfy

1 i

. LEPY: (2.20)
tsup -~ ting -

i.e., after O(K log(K 41)),an (-optimal point is found
by the barricr method.

Theorem 2.1 has few implications, one of which is the
following: If tinr < o < gy, after

O(A’” log(K -1. - fow MLy (2.21)

min{leup - o, @ Liys
iterations, for whichthe last pair is (1', t), is guaranteed
to satisfy 1’¢ Frand t = «.

Consider solving £ by the interior point method de-
scribed above. 'To check the stability of XI it is neces-
sary andsuflicicut to stop the algoritlun after the i-th
iteration, when ti= O. According to (2) this is guar-
anteed after

- tint

o g -
e ]’ ool .sup
735 O log(K min{tgup,~tinf

}) (2.22)

i.e, T, isthe termination time of the barrier method
for checking the stability of 3);.In view of the results
reported in (1 3], we proceed to show that,

the product of 7y, and a particular robust-
ness measure 1S a constant which depends
only on the dimension of ¥y, n.

let P2 - %] and start the interior point method de-
scribed earlier from (7, 1). Thus g, >1 and trivialy
1sup < 2. Note that tint < O, since if tinr > 0 and the
pair(tin, P*) isthe solution to £, then for O < ¢ < 1,
((lim‘,c}")is also a solution to £, which isa contradic-
tion.

Referring to (2.22), we observe that 7y;, is essentially a
function of K which is itself a function of n only, and
a combination of tsup andlint. AS Renegar observed in

3 s teup and Linf convey information shout a particu-
lar condition numnber or the distance to ill-posedness.



Translated interms of the concepts iu stability analy -
sis, this parameter is in fact a “robustness” measure,
as we proceed to show below,

Let o = infu H%H such that A 4+ A is not Hurwitz,
Define “ “
by, 1= L (2.23)
B dog(vV 1) |
Since -1< linr < 0, for small ¢ >0,
AP PA< [tig ~ A PHPALT)  (2.24)
P>0 (2.25)
IPl<1  (226)

iSinconsistent. ‘J bus,

allAll < [ting — A+ 1) (2.27)
< (el 4 OUAN 4T (2:28)
of| 4]l
sraat s < [tingl e (2.29)
A1l -+ 1
(4]l
= ling < poan ,
S Y SN 230

since tint < O. The first inequality above is the result
of two propositions reportedin[1 3].

Since O < ’iianisupS 2,

b

yo = OWK log(K + _3, -
~linf

- O(K Tog() 4 )
[¢3

Thereby we have established the following theorem.

Theorem 2.2

T3, by, = O(K) = O(v/n) (2.31)

Theorem 2.2 constitutes a natural, but very interest-
ing relationship between robustness properties of 3:,
and the efliciency of ipms for determining whether 3
is stable. More specifically, given that (2.31) holds,
fixing n and using the ipm for the solution of the lLya-
punov cquation, certain information pertaining to the
relative stability of thecorresponding system is some-
how revealed! This observation has consequences which
go far beyond the stability analysis of 33y .

2.3

Complexity analysis interms of “ condition measures”
has intcresting implications for probleins considered in
system and control theory. This is iu part duc to the
fact that the interior point methods (ipms) can iu prin-
ciple be applied to all convex optimization problems.
In this section we shall provide another examnple which

reinforces our belief that the conceptual framework
developed in the previous subsection has far reach-
ing consequences, this time inthe context of check-
ing the positive realness of a transfer matrix. In this
avenue, We first state the (generalized) Positive Real
(GPR)Lemma, as well as its consequences iu studying
the absolute stability problem. Then two robustness
measures for the positive real systems arc discussed,
one Of which corresponds to the notion of gainmar-
gin. Having discussed the GPR Lemima and its appli-
cations in stability analysis, au exact analogue of the
interior point method and its computational efficiency
presented of Section 2.2 arc discussed for the I,MJaris-
ing from the GPR L.emma. in paticular, it is shown
that the product of therunning time of theipm and
a certain robustness measure for GPIR systems, is a
constant which depends only on the dimension of the
underlying systemn.

Consider the linear time invariant system iy:

Yo 2= Az+tBu (2.32)
y= Ca4 Du (2.33)

such that the quadruple (A, I3, C, D) is the minimal
realization of the transfer matrix

H(s)= c(s1 - A 1B+ 1)

inwhich case wc write H~ (A, B,C,D). Wc shall
assume that the pairs (A, B)and (A, C) arc respec-
tively, controllable and observable. The matrix A i s
also assumed to be Hurwitz. For further reference let
A ¢ X BeRrxm, C € pprnxn and ]) € pmxn and
without 10ss of generality assume that e < n. Given
an initial condition o aud a control function s which
maps y t0 u,the equations (2.32)- (2.33) define a tra-
jectory for the feedback system ¥4,

Giventhat H/ ~ (A, B, C, D) and assuming that A is
Hurwitz, the transfer inatrix 11 is caled (generalized)
strongly positive real (G SPR)if there exists ¢ > 0 such
that

1(Gjw) 4 H*(jw) > el YV

where 1™ (jw) denotes the conjugate transpose of the
transfer matrix H (jw). The (generalized) Positive Real
(GPR) Lemnma states that 7(s) is GSPR and stable if
and ouly if the following system of linear matrix in-
equalities is feasible [1], [14],

P oo A B
]lcrm{< 0 -1 ) < C D )} <0 (2.34)
1°>0  (2.35)

Let us define two robustness mceasures for a GSPR sys-
A B

tem. Denote by F = ( C D u)

Now let,

o= inf AL/ 2] (2.36)




such that there (foes nof exist a matrix P that satisfies
the following set of linear matrix inequalities,

herm{( o > (B +A)} <0 (2.37)
P>0 (2.38)

and let
8%, = 1/ log(v/n+m -+ ;];) (2.39)

‘T'he quantity 6;;2 is a measure of therelative perturba-
tionthat a stable GSPR system Y9 can tolerate, and
remain stable and GSPR. The perturbation A, can for
example be the result of the uncertainty in the modcl-
ing of the plant, or due to tile finite accuracy of the
computer arithmetic (which for example, is used to
check the GSPR property of the system).

Our next robustness measure is defined to be
1

where fis defined by the following optimization prob-
lem:

&%, = 1/log(v/n4m - ) (2.40)

B = inf X (2.47)

’ 3
s.t. hcrm{( 10 >0] ) ( é /\]:7 n >} < 0 (2.42)

P >0 (2.43)
111'11<1 (2.44)
A> O (2.45)

Let us provide a motivation for introducing 5%2,(}011-
sider the feedback system consisting of 2izinthe for-
ward path,and anonlincar time invariant control furnc-
tion 5 in the feedback path, i.e., v = — 5(y). As-
sumne furthermore that  belongs to the seetor [0, 1/k],
for some real positive mumber k, i.e.,, O <y'n(y) <
klin()|I?, for all y € ™. The quantity &, is essen-
tially ameasure of the maximal sector which 7 can be-
long to, such that the close loop system is guaranteed
to be absolutely stable via the GPR Lemina.

The two robusiness measures for a GP’R systemns just
introduced are related in an interesting way to the com-
putational ¢fficicncy of the barrier method (whenap-
plied to solve the system of 1L.MIs malting from the
GPR Lemina). The relationship is of the following
form:

the products of the running time of the bar-
rier mcthod (with suitably chosen initial
points) and the robustness measures 6§)2

and 6;" arc constants which depend only
iy . >
on the dimension of iz

Theorem 2.3 Given the system Yo, there 1s an algo-
rithm A suchthat for the robustness measures 6; and
>

2
85,

6&;2 TA(s,) = c1
and
053, T A(3sg) = 2

for some constants cyand cawhichdepend 071131071 n+
m.

Proof: We consider the problein of verifying whether
a transfer matrix is GSPR using the barrier method
discussed in the previous section. For this purpose,
we apply the method to solve the system of matrix
inequalities (2.34)-(2.35).

In complete analogy with the application of ipms for
solving the Lyapunov equation, inorder to find a feasi-
ble poiut of the inequalities (2.34)-(2,35), wc apply the
barrier method to solve,

t= 0

P 0 A B
herm{( 0 -1 > ( C D >}

i1 0 A B 10
<t(llcrm{( ‘0 -])(C 1)>}-l <0 ]>)

1'>0
7] <1
~1<t<?

Notcthatl (~ 1, 1) is afeasible point for the set defined
by the last four inequalities above.

By replacing A with 77in the analysis presented in Sec-
tion 2.2 and repeating the exact sequence of argurments,
we coliclude that the number of iterations needed to
obtain a feasible point of the set defined by the above
equality and inegudlities, and consequently to check the
GSPR property of 232 is,

O(K log(24 K -i 1/a))

where K = \/n -1" m.In view of the definition of &3;,,
it follows that

1 _
7]])1’!](})2)6}12 =0

where ¢y is a constant which depends only on the di-
mension of the system (through the variable K).

Interestingly, by an appropriate choice of theinitial
point for the barrier method, its running time can be
made to be inversely proportional to the robustness
Incasurc 5;‘,2 [8].




3 Concluding Remarks

Themain purpose of the paper is to point oul a very
close relationship between stability analysis of dynami-
cal systems onone hand, and the theoretical studies on
the efficiency of certain numerical algorithms. in pa -
ticular, we have demonstrated that for very important
stability problems, the efliciency of the mterior point
methods, can convey certain information about the rel-
ative stability of the corresponding systemns. These re-
sults arc due to the existence of a self-co~Ic.orclant bar-
rier for the cone of positive semi-definite matrices, with
a self-collcordant parameter which depends only onthe
dimension of the space for which the problemn is forinu-
lated in. This phenomena can in principle be used to
give analgorithmic definilion of the relative stability
of adynamical systemn.
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